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NASA-Goddard Space Flight Center

Greenbelt, Maryland



1. Introduction

Today, one common type of problem being solved on computers is the

numerical integration of the initial value problem

y = f(x,y) y(x ) yo (.1)

Although there exist specialized techniques for solving such problems,

the two most commonly used are the single step (e.g., Runge-Kutta) and

multistep (e.g., Adams) methods. The major advantage of the multistep

methods over the single step methods is that fewer functional evalua-

tions are usually required per integration step. For this reason, the

authors will limit the discussion that follows to predictor-corrector

schemes.

For the individual who wants a solution to (1.1), there are two

important considerations when selecting a method: speed and accuracy.

For the researcher who is developing a predictor-corrector procedure,

there are three important considerations: speed, truncation error and

stability. The basic factor for determining speed is the number of

functional evaluations required per step. Accuracy is determined by

the stability error and truncation error of the method. The Adams

methods have been shown to be about as good as any of the existing

predictor-corrector formulas. The major problem with these formulas

is that interval modification and interpolation are difficult.

Nordsieck [1] has devised a method equivalent to one of the Adams

1



methods which accomplishes these tasks simply and inexpensively

(Appendix C). Also, Nordsieck's method has a built-in automatic

starting procedure, a feature not available with the Adams formulas.

2. The Methods

The derivation of Nordsieck's method is based on Taylor's theorem.

The authors refer the reader to Nordsieck's paper for a detailed de-

scription of the method. Nordsieck stores the current values of the

higher derivatives of a polynomial approximating the solution. Adams

stores successive values of a polynomial approximation for f(x,y) at

several backward points. Nordsieck saves the equivalent polynomial

information as Adams but in a more convenient form for interpolation

and interval modification,

The formulas discussed in detail by Nordsieck are equivalent to

the 5th order Adams-Bashforth predictor and the 6th order Adams-Moulton

corrector. Descloux [2].has derived a Nordsieck-type formula which is

equivalent to the 6th order Adams-Bashforth predictor and the 6th

order Adams-Moulton corrector. The authors will study these particular

formulas because of their desirable stability and truncation error

properties. The following terminology will be adhered to: the original

formulas derived by Nordsieck will be called the standard Nordsieck

formulas; the formulas derived by Descloux will be called the modified

Nordsieck formulas. These equations written in terms of backward

points are given in (2.1) and (2o2),
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Standard Nordsieck

predictor: y(x+h) = y(x) + 7 (1901f(x) - 2774f(x-h)

+ 2616f(x-2h) - 1274f(x-3h)

+ 251f(x-4h))
(2.1)

corrector: y(x+h) = y(x) + 1-40 (475f(x+h) + 1427f(x)

- 798f(x-h) + 482f(x-2h)

- 173f(x-3h) + 27f(x-4h))

Modified Nordsieck

predictor: y(x+h) = y(x) + 1440 (4277f(x) - 7923f(x-h)

+ 9982f(x-2h) - 7298f(x-3h)

+ 2877f(x-4h) - 475f(x-5h))
(2.2)

corrector: same as standard Nordsieck corrector

The corresponding equations derived by Nordsieck and Descloux are given

in Appendix A.

The reason for studying the modified Nordsieck formulas is that a

step by step check on the local relative truncation error can be made.

No estimation of the local relative truncation error is available with

the standard Nordsieck formulas.

When selecting a predictor-corrector scheme, one must decide the

number of corrections (and evaluations) to be made after doing the

initial prediction. This is of importance since this choice affects

the stability and truncation error of the method. If one iterates to

convergence then only properties of the corrector influence the result.
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Because it is generally considered that functional evaluations are the

most expensive part of the predictor-corrector procedure, the authors

will limit the number of functional evaluations to two per step and

test only the following procedures: PEC, PECE and PECEC. (P stands

for predict, E stands for evaluate and C stands for correct.)

3. Truncation Error

For the single equation y' = f(x,y), we use the notation:

y(x) = true solution of the differential equation

Yn(x) = Nordsieck solution for P(EC)'-" or PE(CE)l
-

8n(X) = Yn(x) - y(x)

fn(X) f(x,yn(x))

yp(X) = predicted value of y

fP(x) as defined by Nordsieck

h = the stepsize,

The Nordsieck iteration for one step from x to x+h is then

yl(x+h) = yp(x+h) (3.1)

yn(x+h) = yp(x+h) + 2 h(fn- (x+h) - fP(x+h)). (3.2)

n:2

The error for the standard Nordsieck is

62 (xh) 863 h7y(7) x+h) - 2 h7y(6) (Xh) - (x6h,y(x+h
(x -- ((xh) 

f

(xhy(x+h))~~~6047~0 0 ayh(3.3)

+ O(h8 )
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6(x+h) - 863 h7 y(7)(x+h) + O(hs ) n23

and the error for the modified Nordsieck is

6 (x+h) = 863 h7 y(7)(xih) + O(h8 ) n2 
6n(X~h) 60480

In the standard Nordsieck case we know

f (X+h) - fP(x+h) = hSy(6)(x+h) + O(h6 ) nal

yn(x+h) - yp(x+h) = A h6y(6)(x+h) + O(h7 )

y3 (x+h) - Y2(x+h) =
~(( 2 h7y(6)(x+h) af
(A-) )y

(x+h, y ( x+h))

+ o(h8 ).

f 2(x+h) - fl(x+h) 
=

2 h
6
y(6)(x+h) 

f

(x+h,y(x+h))
(3.9)

+ o(h7).

No satisfactory measure of y(7) exists. However in the modified

Nordsieck case we have the information

f (x+h) - fP(x+h) = h6y(7)(x+h) + O(h7 )
n

n2l (3.10)

Yn(x+h) - y (x+h) = 2 h y(

?

(x+h)+0(h8) n-2.
Yn p ,xh 288

5
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Thus, in this case, an approximation for 8 (x+h) is
n

n -19950 (Yn(x+h) - yp(x+h)) nŽ2.n 19950 np (3.12)

For a system of m equations

Yi = fi(x,y
1
(), , m()) , i = l,..,m , we use the notation:

yi(X) = true solution of the differential equation

yi (x) = Nordsieck solution for P(EC) n -
or P(CE)n-

i,n(X) =Yin(X) - Yi(x)

fi n(X) = fi(xY (,n(), Ymn(x))

Yip(X) = predicted value of. y i

fP(x) as defined by Nordsieck.

The error for the standard Nordsieck is

863 h7(7)6. (x+h) = 7Yi (x+h)1,2 648

m
y(6(x+h)

j=l

fi ( x + h 'Yl n ( x + h ) ', Ym n(x+h)

ayj

+ O(h8) (3.13)
i = 1, ... , m

- 8638 h7y (7) (x+h) + O(h8 )

i = 1, ..., m

n23
(3.14)

6

i, n(X+h)

( 29)2h7
288s



and the error for the modified Nordsieck is

6 (x+h) =86 h 7 (7)(X+h) + O(h8) nŽ2 (3.15)
6in(

x fh ) 60-8-- y

i = 1, ..., m.

Equation (3.12) now becomes

in 86599 (Yin (x+h) - y.i (x+h)) n22. (3.16)Lin ~ 19950 n

4. Stability

The necessary theoretical background on stability can be found in

the papers by Krogh [3], Crane and Klopfenstein [4] and Chase [51. By

examining the eigenvalues {X} of the Jacobian matrix of f with respect

to y, the stability of a method can be investigated. It will be as-

sumed that the Jacobian matrix is completely diagonalizable and the

eigenvalues are approximately constant over an interval of 5h (standard)

or 6h (modified). The authors have some evidence that the results in

this section hold for Jacobian matrices which are not completely

diagonalizable. Consider the set Is : s = hX3. The values of the

elements of this set determine whether or not the method remains stable.

Briefly, a method is absolutely stable if errors decrease in magnitude.

A method is relatively stable if errors do not grow more rapidly than

the solution.

Formulas given by Hall [6] allow the computation of the character-

istic equations
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p(z,s) = 0 (4.1) 

for the standard and modified Nordsieck PEC, PECE and PECEC algorithms

(Appendix B). With the appropriate conditions [3,p.380], applied to

these equations, the absolute and relative stability diagrams have been

computed (figures 1-5). Because of the symmetry involved, only the

upper half of the s-plane is given in each diagram. The heavy solid

curves bound the absolute stability regions. The portion of these

curves which appears to coincide with the imaginary axis is just very

close to it. The area to the right of the dashed curves is the region

of relative stability. In the right half s-plane, this region does

not have a well-defined boundary. Examination of the five diagrams

yields the following two results:

1) the diagrams for both the standard and modified Nordsieck

formulas decrease in area in the following order: PECE,

PECEC, PEC;

2) the standard Nordsieck PEC, PECE and PECEC diagrams are

larger than the modified Nordsieck PEC, PECE and PECEC

diagrams respectively.

Although diagrams for different order Adams formulas have not been

computed, the same general result is expected.

An example will show that absolute stability will not always

insure an accurate solution. The stronger condition of relative stability

will be required. The definition of relative stability presented by

8



Krogh 13,P.377] is as follows:

Defn. For Isi sufficiently small, one of the

roots (of the characteristic equation (4.1))

r , the principal root, is approximately e.

Any other root we label re to indicate thate

Irel<Iesl, and if the r with magnitude of

s
e are simple, then a method is said to be

relatively stable.

Example. Problem: y' - y , y(o) = 1

-x =-i
Solution: y(x) = e ,X -

Procedure: standard Nordsieck PEC with constant s

Absolute Value of

s = -.07

.571-5

.486-5

.524-5

.533-5

.547-5

.561-5

.574-5

.584-5

Relative Error

s = -. o8

.116-4

.272-4

.120-3

.251-3

.252-2

.656-2

.620-1

.159-0

9

x

3

6

9

12

15

18

21

24



Inside the relative stability region (s = -.07), the standard Nordsieck

PEC calculates a good solution. However, outside the relative stabil-

ity region but inside the absolute stability region (s = -.08) the

solution blows up. The standard Nordsieck characteristic equation has

been solved for s = -.07 and s = -.08. Below, e and the roots are

listed. Complex conjugates are omitted.

s -. 07 -. 08

e .9323938 .9231164

.9323940 .9231166

r
2

- .913550 -. 9632736

r
3

-. 3054155+ .14072i .3120278+ .1424621i

r
4

- .0811852 + .482849i .089245 + .4942325i

Since Isl is sufficiently small, in both cases rl, the principal root,

approximates e closely. When s = -.07, Ir21, Ir3! and Ir I are all

less than e as Krogh has required for relative stability. However,

when s = -.08, ,r I is greater than e . The root r
a

dominates the

solution of the error difference equation [7,p.293] and thereby causes

the poor results.

In the right half s-plane, as the real part of s gets larger, e

"moves away" from the roots of the characteristic equation. When the

s
principal root no longer approximates e , then the definition of rela-

tive stability can no longer be applied. It is then possible that the

h is so large that the truncation error will cause a poor solution to

be calculated.

10



Figure 1. Standard Nordsieck PEC



Figure 2. Standard Nordsieck PECE

Standard Nordsieck PECEC; modified Nordsieck PECEFigure 3.

.4
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Figure 4. Modified Nordsieck PEC

Figure 5. Modified Nordsieck PECEC
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5. Computational Considerations

Although the stability diagrams for the standard and modified

Nordsieck formulas have been computed, these diagrams are difficult to

use in many test problems. The difficulty lies in the fact that an

eigenvalue problem must be solved at each integration step. Even if

the partial derivatives are known functions or can be closely approxi-

mated, the resultant eigenvalues may not be accurate. Matrix norms [83

are available which allow the computation of an upper bound for the

moduli of the eigenvalues. However, there is no assurance that these

approximations will be reliable. For these reasons, it is desirable

to find some way to insure stability at each step without having to

consider the values of s. Unfortunately, there is no known technique

available to accomplish this for all initial value problems.

Even if the eigenvalues are known, it is the nature of the true

solution to the differential equation that determines which values

of s are essential to the stability of the problem. Furthermore, the

type of stability that is appropriate to consider is also determined

by the behavior of the true solution. In many cases, relative stability

is too strong a condition to impose to control the stability error.

6. Test Problems

Because of the lack of a minimal comprehensive set of test problems

for comparing the efficiency of our algorithms, the authors chose the

following examples without claim to the completeness of the selections:
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1) y = - y , y(o) = 1 Xo = 0 Xmax = 100,
- Yxmax

with solution y(x) = e and k = - 1 ;

2) y Y Y(0) = , x 0, x =201 2 1 a max

Y2 = - Y, Y2(o) = 1 ,

with solutions yl(x) = sin(x), y2(x) = cos(x)

and X = i;

3) y' = 2xy , y(o) = 1 , xo 0, x 10 ,o max

with solution y(x) = e and 1 = 2x ;

4) y' = -xy(l + y2 ), y(O) = 1, xo = O, Xmax = 10,

with solution y(x) = (2ex - 1)- and

(=- ' 2eX - 1 .

The initial h for all problems was 1. Total and successful functional

evaluations do not include evaluations done in the starting procedure.

Since no accurate measure of the truncation error is available for the

standard Nordsieck formulas, the authors defined

62 = h(f(x+h) - fP(x+h)) for PEC,

6 = h(f (x+h) - fP(x+h)) for PECE, (6.1)

63 = h(f (x+h) - fP(x+h)) for PECEC.

12



A local relative truncation error test (! 6 /y
n

(x + h) | < e)

was applied to test problems 1, 3 and 4. An absolute error test

( 6
n

I < e) was applied to problem 2. The input values of e for

our test programs were 5.0 x 10- 4 , 2.5 x 10-4, 10
-
4 , 7-5 x 10

-

5,

5.0 x 10
-
5 , . . , 7.5 x 10

-

17. No stability requirements were

imposed in the test programs. The test problems were solved on an

IBM 360/91 using double precision arithmetic.

The results for e = 10-6 and 10
'

13 are given in Tables 1-4.

In an effort to make meaningful comparisons, graphs were drawn for

each test problem plotting the final accumulated relative error

(absolute error for problem 2) versus total functional evaluations

for each value of e. These graphs are not presented here.

7. Alternative Interval Modification

An alternative method for determining the stepsize for the modified

Nordsieck formulas was developed as follows: Assume that one step has

been taken from x to x + h. Impose the relative error condition

n
n < G (7.1)

Yn(x+h) <7.1)

Since 863 h7(7)Since =60480 y (x + h) + ... then an "optimum" interval may
n 6o48

be found using the relation

n h 7

' (X+h) h7 (7.2)
opt

13



or

h 7 h7 e
opt

Yn ( x + h )

n

Using the approximation (3.12) for 6n yields

hot h ( h 19950 e
opt 863

yn(x+h)l

lYn(x+h) - yp(x+h)I

For m-dimensional systems, let hopt be the minimum of the right

hand side of (7.4) over the m equations. A similar analysis will

hold for this section if one imposes an absolute error condition

in (7.1). The appropriate changes are easily made in (7.4) and in the

following strategy table. Numerical results appear in Tables 5

and 6.

14
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Strategy Table

Nordsieck Strategy Proposed Strategy

Error test fails h = h/2 
~~6 h~new h = gn h) max (tlhopt l, Ihl)

> 2 e Proceed from x
Yn Proceed from x

opt

Error test passes 2h hnew = sgn(:h)-max(lhl,min(thptl, 12hi))

j ¢ Else h = h Proceed from x + h
STn ~~new

hopt h Proceed from x + h

t is a constant which satisfies 0 < t < 1.

P-1LA



8. Final Remarks

Examination of the graphs discussed in section 6 revealed that, for

high accuracy requirements (input e s 10-9), the standard PEC was more

efficient than the standard PECE and PECEC procedures and the modified

PEC was more efficient than any of the other procedures tested. For the

modified Nordsieck formulas, this result held true for both techniques of

interval modification. Neither the Nordsieck strategy nor the proposed

strategy was clearly superior to the other. Further investigations are

needed to determine when single evaluation predictor - corrector methods

are more efficient than multi-evaluation methods.

In conclusion, the authors note that subroutines employing Nordsieck's

method have been satisfactorily used by members of the Goddard Space Flight

Center for the past three years. The ease of performing interval modifi-

cation and interpolation are the particular features of this method that

were found to be most desirable by scientific personnel at this installation.
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Table 1, Problem 1.

starting relative error
h of y at xmaxmax

no. of
integration

steps

no. of
successful
evaluations

no. of
total

evaluations

no. of
-evaluations
to start

std. PEC

" PECE

" PECEC

mod. PEC

" PECE

" PECEC

std. PEC

" PECE

" PECEC

mod. PEC

" PECE

" .PECEC

_-j

e = 1C

*,

.I

It

e = 1C

It

it

If

-6 2-6

2-4

2-3

2-6

2-3

2-3

,13 2-11

2-9

2-9

2-11

It

It

.220-5

.656-6

.111-6

.888-6

.o 141-4

.574-r5

.168-11

.177-11

.181-11

.296-10

.243-10

.217-10

1607

1600

1597

2376

800

800

25611

25603

25603

6425

6403

6403

1607

3200

3194

2376

1600

1600

25611

51206

51206

6425

12806

12806

1607

3200

3196

2410

1600

1600

25611

51206

51206

6425

12806

12806

121

177

145

151

181

181

201

337

337

251

341

341



Table 2. Problem 2.

starting absolute error
h of Y1 at Xma

x

no. of no. of
integration successful
steps evaluations

no. of
total

evaluations

no. of
evaluations

to start

std. PEC e_-

" PECE "

" PECEC "

mod. PEC "

1" PECE "

" PECEC "

std. PEC e=

1" PECE "

" PECEC "

mod. PEC "

" PECE "

" PECEC "

lo-6
l0

lo-13

327

640

640

2-6

2
-4

2-6-4

22

-3
2

2-3

-11
2

2

.221-6

.653-7

.173-7

.534-6

.112-3

.860-4

.737-13

.808-13

.848-13

.343-11

.246-11

.199-11

327

320

320

330

83

83

5131

5123

5123

1305

1288

1283

327

640

640

330

166

166

5131

10246

10246

1305

2576

2566

121

177

177

151

181

181

201

337

337

251

381

341

333

166

166

5131

10246

10246

1305

2576

2566



Table 3o Problem 3.
relative error
of y at x

h max

no. of
integration

steps

no. of
successful
evaluations

no. of
total

evaluations

no. of
evaluations

to start

std. PEC e = 10 2- 5

" PECE " 2- 4

f" PECEC " 2

mod. PEC " 2-5

1" PECE " 2-3

" PECEC " 2-3
-13

std. PEC 2

t" PECE " 2

" PECEi. " 2

modo PEC " 2

PECE " 2

" PECEC " 2-7

o615-5

.185-5

.178-6

.470-3

.683-4

.113-3

.217-11

.169-11

.147-11

.597 -10

.707-10

.823-10

1501

1501

1499

527

518

528

22822

22791

22791

5987

6125

6130

1501

3002

2998

527

1036

1056

22822

45582

45582

5987

12250

12260

1506

3010

3008

543

1044

1066

23015

46052

46052

6117

12256

12266

105

177

177

131

181

181

169

305

305

191

341

341



Table 4. Problem 4.

starting relative error
h of y at xax

max

no. of
integration

steps

no. of
successful
evaluations

no. of
total

evaluations

no. of
evaluationE

to start

std, PEC e = 10

" PECE it

I" PECEC "

mod. PEC "

" PECE "

i" PECEC "

std. PEC e = 10

" PECE "

" PECEC "

mod. PEC "

"t PECE "

" PECEC "

bO
o

.240-5 773 105

.162-5

.448-7

.621-6

.786-4

.148-4

.114-12

.421-12

.524-12

.528-10

.322-10

.277-10

745

680

709

1218

318

309

9942

10303

10302

2717

2863

2807

2-4

2 -4

2-5

2-1

2-4

2-9

2-8

2-8

2-8

2-1

2-7

745

1360

1418

1218

636

618

9942

20606

20604

2717

5726

5586

1448

1418

1233

685

644

10481

20972

20972

2805

5790

5614

177

177

131

121

241

169

305

305

191

121

341



-13
Table 5. Modified Nordsieck with ¢ = 10 t = .95

no. of no, of
. * integration successful

Problem Procedure steps evaluations

1 PEC .465-9 4185 4185

1 PECE .352-9 4166 8332

1 PECEC .289-9 4163 8326

2 PEC .796-10 817 817

2 PECE .507-10 800 1600

2 PECEC .369-10 795 1590

3 PEC .179-9 4279 4279

3 PECE .315-9 4270 8540

3 PECEC .373-9 4274 8548

4 PEG .198-9 1955 1955

4 PECE .147-9 1953 3906

4 PECEC .121-9 1951 3902

*The values in this column correspond to the values in the second labeled cc
Tables 1-4. The starting procedure was unchanged for these test runso

no. of
total

evaluations

4185

8332

8326

817

1600

1590

4324

8630

8638

2002

4008

4004

)lumns of



Table 6. Modified Nordsieck with e = 10
- 6

, t = .95

*

Problem Procedure

no. of
integration
steps

no. of
successfu
evaluation

1 PEC .232-5 2434 2434

1 PECE .695-3 460 920

1 PECEC .114-3 453 906

2 PEC .626-5 323 323

2 PECE .973-4 83 166

2 PECEC .857-4 84 168

3 PEC .150-2 390 390

3 PECE .254-3 377 754

3 PECEC .296-3 382 764

4 PEC .847-5 1244 1244

4 PECE .297-3 220 440

4 PECEC .331-4 222 444

*The values in this column correspond to the values in the second labeled

Tables 1-4. The starting procedure was unchanged for these test runs,

1
ns

no. of
total

evaluations

2592

922

908

348

166

168

422

826

836

1337

512

502

columns of



Appendix A

Standard Nordsieck Formula

y(x+h) = y(x) + h(f(x) + a(x) + b(x) + cdx) + dCx) + 95 (fx+h) -

fP(x+h) = f(x) + 2a(x) + 3b(x) + 4c(x) + 5d(x),

a(x+h) = a(x) + 3b(x) + 6c(x) + 10dx) + (f(x+h) - fP(x+h)),

b(x+h) = b(x) + 4c(x) + lOd(x) + CfCx+h) - fP(x+h)),

c(x+h) = c~x) + 5d(x) + 8 (f(x+h) - fPCx+h)),

dCx+h) = dCx) + -12 (f(x+h) - fP(x+h)).
120

Modified Nordsieck Formula

y(x+h) = y(x) + h(fCx) + aCx) + b(x) + c(x) + dCx) + e(x)

+ 95 (f(x+h) - fP(x+h)))

fP(x+h) = f(x) + 2aCx) + 3b(x) + 4c(x) + 5d(x) + 6e(x),

a(x+h) = a(x) + 3bCx) + 6c(x) + lod(x) + 15e(x) + 137 (fx+h)- fx+h,

b(x+h) = bCx) + 4c(x) + lOd(x) + 20e(x) + 8 (f(x+h) - fP(x+h)),

c(x+h) = c(x) + 5dCx) + 15efx) + 7(fx+h) - fPx+h)),

d(x+h) = dCx) + 6e(x) + 1 (f(x+h) - flP(x+h)),

e(x+h) = e(x) + 1 (f(x+h) - fP(x+h)).
720

23
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Appendix B

Characteristic Equations

Standard Nordsieck

2641 z _221 4PEC: z6 - (1 + 4 s) z5 + g s 7 99s z 3

+ 36409 s2 - z +s =O

PECE: z5 - (1+ 3 s + X s2 ) Z4 + 1e3 2653 s2) Z3
-C z 240 41472 '2-~ s + 20736

241
- _ S + 172 z + s+ 12103 s2) z

20736

-(o s+ s2) =070- 414r72

PECEC: z6 - (1 + 17 s + 8163 2)

_ (24 1 + S2) z3

720 S + 1472+

1- 0 3 18221 s 2) z +16 s + 27--5'

zs + 133 50179 s2 ) z4
+ 150 + 27646

+ 3 6S +31 ) z2
+ e S2 = 41472

T2-944

24



Appendix B, Characteristic Equations, continued

Modified Nordsieck

PEC: z7 - (1 + 33 s) z6
10

+ 1197 s z - 171 s z4
160 1WO

+ 8399 Z 3 
720

1667 2 665
2-0 s z + 1s z - A5 S=0

PECE: Same as standard Nordsieck PECEC

PECEC: z7 - (1 + s + 209 2) 

+ 33 252 2) - 41 245033 2) 42 1024 27
2
0
S+s

417 +159581 ( S+2)
147o0 s + M1 7! S

+ (829I S) z -

Z3 +31673 s 2 ) z2
z 160 1 38-24

S2=062944 s 

25



Appendix C

Modified Nordsieck Interval Modification

Reversal

Replaces h
Replaces y
Replaces f
Replaces a
Replaces b
Replaces c
Replaces d
Replaces e

-h

Y
f

- a
b

-c
d

-e

Increase

$h

Y
f
$a

~2 b
B3c
B4d
5e

Modified Nordsieck Interpolation

Suppose z is between x and x + h

z-x
Let ~ = 

then y(z) - y(x) + h(cf(x,y(x)) + a2a(x) + a3b(x) + y4c x)

+ a5d(x) + coe(x))

f(z,y(z)) = f(x,y(x)) + 2aa(x) + 3ecb(x) + 4c3c(x)

+ 50c4 d(x) + 6a5 e(x)

For standard Nordsieck case, omit all e(x) terms in the above formulas.

26

Decrease

h/O

y
f
a/|
b/f2

e/ 5
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